Demonstration and Optimization of Multiple Aptamer-ELISA “ELASA” Assays with Novel DNA Aptamers

Kausik Narendran, Ilayarasi Gandhi, Mithil Soni, Arun Pillai, Rafal Drabek, Ralph Ballerstadt and George W. Jackson

BioTex, Inc. (and subsidiary Ice Nine Biotechnologies), Houston, TX, USA

Abstract

While the ELISA method is generally very sensitive with specificity depending on the quality of primary detection antibody, protein-based antibody reagents are not very stable in non-refrigerated (i.e. point-of-care) applications. In contrast, DNA aptamers are extremely stable in both dried and lyophilized form and therefore amenable to field-deployed assays. Towards using such reagents, we are demonstrating their suitability in several modified ELISA formats termed enzyme-linked aptamer sorbent assays or “ELASA”. Using novel aptamers, here we demonstrate both direct and sandwich ELASA approaches. For each of the approaches we determine their apparent limit of detection. In ongoing work, the specificity of our various aptamers are being determined with some of the preliminary data are presented here. Finally, we present a novel application of a reaction to generate sulfonated PVDF membranes. These modified membranes have shown less non-specific binding to negatively charged nucleic acids while retaining their excellent binding capacity for proteins.

Methods

Aptamers

Aptamers have a number of potential advantages over antibodies [1], especially for point-of-care or “deployed” assays in which antibodies require a cold-chain of custody to prevent degradation. Nevertheless, the extensive use of enzyme linked immunosorbent assays or “ELISAs” has resulted in well-established methods, enzymes, and substrates for sensitive detection of antigens/analytes. Thus, we are demonstrating aptamers as modular replacements for antibodies in convenient “ELISA-like” formats familiar to many potential users. Others have rather naturally termed such assays “enzyme linked aptamer sorbent assays” or “ELASA” [2].

Aptamers are single-stranded DNA or RNA oligonucleotides selected to have unique three dimensional folding structure for binding to a variety of targets such as proteins, peptides, and even small molecules with affinity and specificity rivaling that of antibodies. They are typically selected in vitro by a process commonly referred to as “SELEX” as depicted in Figure 1.

A key aspect of any SELEX procedure is partitioning of the binding vs. non-binding nucleic acid population. Figure 2 depicts a sulfonation reaction [3] for modification of standard PVDF membrane. The resulting negative charge results in less non-specific adsorption of nucleic acids while the high capacity of PVDF for adsorbed protein is still retained [3]. This also has obvious implications for the ELASA assays presented here in which minimization of background aptamer binding is desired.

Herein we demonstrate the utility of 3 different ELASA approaches (Figure 3) for using aptamers to quantify protein analytes.

Figure 1

Schematic representation of conventional single-target DNA aptamer selection

Figure 2

Reaction involved in sulfonation of Polyvinylidene

Figure 3

Three different approaches to ELISA-like (“ELASA”) assays using aptamers. (3A): ELASA by direct spotting of protein analyte on membrane surface. (3B): Indirect “Method 1” for “sandwich” aptamer/antibody ELISA. In Method 1 an aptamer is used as the primary capture element for the protein analyte. (3C): Indirect “Method 2” for sandwich aptamer/antibody ELISA. In Method 2 an antibody is used as the primary capture element while a novel, biotinylated aptamer is used as the secondary reporter.

Figure 4A

Result of direct ELASA sensitive detection of a protein analyte. (4B): Result of “Method 1” indirect or “sandwich” aptamer/antibody ELISA. (4C): Result of “Method 2” indirect or “sandwich” aptamer/antibody ELISA.

Discussion

The results here demonstrate the feasibility of readily replacing antibodies in many common ELISA assays. Given the lower cost of aptamer materials, their well-defined chemical nature, and their many other potential advantages over protein-based antibodies [1], we find these results especially encouraging for a variety of applications. We are currently investigating complementary aptamers for their ability to bend non-overlapping epitopes and thereby develop “sandwich” assays completely comprising aptamers. Both of the “indirect” methods presented here should be readily translated to standard fluorescent microplate readers.

References


Acknowledgements

Thanks to Roy Chung of the Diagnostics Consulting Network for hCG primary antibodies. This work was supported in part by an SBIR Contract HHSN261201000073C (NH NCI) to G.W.J.